MakeItFrom.com
Menu (ESC)

EN 1.4581 Stainless Steel vs. EN 1.4941 Stainless Steel

Both EN 1.4581 stainless steel and EN 1.4941 stainless steel are iron alloys. Both are furnished in the solution annealed (AT) condition. They have a very high 96% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4581 stainless steel and the bottom bar is EN 1.4941 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
180
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 28
39
Fatigue Strength, MPa 150
180
Impact Strength: V-Notched Charpy, J 45
98
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
77
Tensile Strength: Ultimate (UTS), MPa 510
590
Tensile Strength: Yield (Proof), MPa 210
210

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 490
520
Maximum Temperature: Mechanical, °C 990
940
Melting Completion (Liquidus), °C 1440
1430
Melting Onset (Solidus), °C 1400
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
16
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 21
16
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 4.2
3.3
Embodied Energy, MJ/kg 59
47
Embodied Water, L/kg 160
140

Common Calculations

PREN (Pitting Resistance) 26
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
180
Resilience: Unit (Modulus of Resilience), kJ/m3 110
110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
21
Strength to Weight: Bending, points 18
20
Thermal Diffusivity, mm2/s 3.9
4.3
Thermal Shock Resistance, points 12
13

Alloy Composition

Boron (B), % 0
0.0015 to 0.0050
Carbon (C), % 0 to 0.070
0.040 to 0.080
Chromium (Cr), % 18 to 20
17 to 19
Iron (Fe), % 61.4 to 71
65.1 to 73.6
Manganese (Mn), % 0 to 1.5
0 to 2.0
Molybdenum (Mo), % 2.0 to 2.5
0
Nickel (Ni), % 9.0 to 12
9.0 to 12
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 1.5
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0
0.4 to 0.8