MakeItFrom.com
Menu (ESC)

EN 1.4587 Stainless Steel vs. EN AC-44000 Aluminum

EN 1.4587 stainless steel belongs to the iron alloys classification, while EN AC-44000 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4587 stainless steel and the bottom bar is EN AC-44000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
51
Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 34
7.3
Fatigue Strength, MPa 200
64
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
27
Tensile Strength: Ultimate (UTS), MPa 540
180
Tensile Strength: Yield (Proof), MPa 250
86

Thermal Properties

Latent Heat of Fusion, J/g 310
560
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1420
590
Melting Onset (Solidus), °C 1370
590
Specific Heat Capacity, J/kg-K 470
910
Thermal Conductivity, W/m-K 17
140
Thermal Expansion, µm/m-K 15
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
36
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
130

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.5
Density, g/cm3 8.1
2.5
Embodied Carbon, kg CO2/kg material 6.3
7.8
Embodied Energy, MJ/kg 87
150
Embodied Water, L/kg 230
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
11
Resilience: Unit (Modulus of Resilience), kJ/m3 150
51
Stiffness to Weight: Axial, points 14
16
Stiffness to Weight: Bending, points 24
55
Strength to Weight: Axial, points 18
20
Strength to Weight: Bending, points 18
28
Thermal Diffusivity, mm2/s 4.5
61
Thermal Shock Resistance, points 13
8.4

Alloy Composition

Aluminum (Al), % 0
87.1 to 90
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 2.0 to 3.0
0 to 0.050
Iron (Fe), % 32.7 to 41.9
0 to 0.19
Magnesium (Mg), % 0
0 to 0.45
Manganese (Mn), % 0 to 2.0
0 to 0.1
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 28 to 30
0
Nitrogen (N), % 0.15 to 0.25
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
10 to 11.8
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.1