MakeItFrom.com
Menu (ESC)

EN 1.4587 Stainless Steel vs. C87400 Brass

EN 1.4587 stainless steel belongs to the iron alloys classification, while C87400 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4587 stainless steel and the bottom bar is C87400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
21
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
41
Tensile Strength: Ultimate (UTS), MPa 540
390
Tensile Strength: Yield (Proof), MPa 250
160

Thermal Properties

Latent Heat of Fusion, J/g 310
250
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1420
920
Melting Onset (Solidus), °C 1370
820
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 17
28
Thermal Expansion, µm/m-K 15
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
6.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
7.2

Otherwise Unclassified Properties

Base Metal Price, % relative 36
27
Density, g/cm3 8.1
8.3
Embodied Carbon, kg CO2/kg material 6.3
2.7
Embodied Energy, MJ/kg 87
44
Embodied Water, L/kg 230
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
65
Resilience: Unit (Modulus of Resilience), kJ/m3 150
120
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 18
13
Strength to Weight: Bending, points 18
14
Thermal Diffusivity, mm2/s 4.5
8.3
Thermal Shock Resistance, points 13
14

Alloy Composition

Aluminum (Al), % 0
0 to 0.8
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 2.0 to 3.0
79 to 85.5
Iron (Fe), % 32.7 to 41.9
0
Lead (Pb), % 0
0 to 1.0
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 28 to 30
0
Nitrogen (N), % 0.15 to 0.25
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
2.5 to 4.0
Sulfur (S), % 0 to 0.025
0
Zinc (Zn), % 0
12 to 16
Residuals, % 0
0 to 0.8