MakeItFrom.com
Menu (ESC)

EN 1.4588 Stainless Steel vs. 1350 Aluminum

EN 1.4588 stainless steel belongs to the iron alloys classification, while 1350 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4588 stainless steel and the bottom bar is 1350 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
20 to 45
Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 34
1.4 to 30
Fatigue Strength, MPa 190
24 to 50
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
26
Tensile Strength: Ultimate (UTS), MPa 540
68 to 190
Tensile Strength: Yield (Proof), MPa 240
25 to 170

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1450
660
Melting Onset (Solidus), °C 1410
650
Specific Heat Capacity, J/kg-K 460
900
Thermal Conductivity, W/m-K 15
230
Thermal Expansion, µm/m-K 17
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
61 to 62
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
200 to 210

Otherwise Unclassified Properties

Base Metal Price, % relative 33
9.5
Density, g/cm3 8.1
2.7
Embodied Carbon, kg CO2/kg material 6.2
8.3
Embodied Energy, MJ/kg 84
160
Embodied Water, L/kg 200
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
0.77 to 54
Resilience: Unit (Modulus of Resilience), kJ/m3 140
4.4 to 200
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 18
7.0 to 19
Strength to Weight: Bending, points 18
14 to 27
Thermal Diffusivity, mm2/s 4.0
96
Thermal Shock Resistance, points 11
3.0 to 8.2

Alloy Composition

Aluminum (Al), % 0
99.5 to 100
Boron (B), % 0
0 to 0.050
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 19 to 21
0 to 0.010
Copper (Cu), % 0.5 to 1.5
0 to 0.050
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 41.2 to 50.4
0 to 0.4
Manganese (Mn), % 0 to 2.0
0 to 0.010
Molybdenum (Mo), % 6.0 to 7.0
0
Nickel (Ni), % 24 to 26
0
Nitrogen (N), % 0.1 to 0.25
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.020
Vanadium (V), % 0
0 to 0.020
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.1