MakeItFrom.com
Menu (ESC)

EN 1.4588 Stainless Steel vs. 5042 Aluminum

EN 1.4588 stainless steel belongs to the iron alloys classification, while 5042 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4588 stainless steel and the bottom bar is 5042 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 34
1.1 to 3.4
Fatigue Strength, MPa 190
97 to 120
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
26
Tensile Strength: Ultimate (UTS), MPa 540
340 to 360
Tensile Strength: Yield (Proof), MPa 240
270 to 310

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1450
640
Melting Onset (Solidus), °C 1410
570
Specific Heat Capacity, J/kg-K 460
900
Thermal Conductivity, W/m-K 15
130
Thermal Expansion, µm/m-K 17
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
33
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
110

Otherwise Unclassified Properties

Base Metal Price, % relative 33
9.5
Density, g/cm3 8.1
2.7
Embodied Carbon, kg CO2/kg material 6.2
8.8
Embodied Energy, MJ/kg 84
150
Embodied Water, L/kg 200
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
3.6 to 12
Resilience: Unit (Modulus of Resilience), kJ/m3 140
550 to 720
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 18
35 to 37
Strength to Weight: Bending, points 18
40 to 42
Thermal Diffusivity, mm2/s 4.0
53
Thermal Shock Resistance, points 11
15 to 16

Alloy Composition

Aluminum (Al), % 0
94.2 to 96.8
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 19 to 21
0 to 0.1
Copper (Cu), % 0.5 to 1.5
0 to 0.15
Iron (Fe), % 41.2 to 50.4
0 to 0.35
Magnesium (Mg), % 0
3.0 to 4.0
Manganese (Mn), % 0 to 2.0
0.2 to 0.5
Molybdenum (Mo), % 6.0 to 7.0
0
Nickel (Ni), % 24 to 26
0
Nitrogen (N), % 0.1 to 0.25
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15