MakeItFrom.com
Menu (ESC)

EN 1.4588 Stainless Steel vs. ACI-ASTM CA28MWV Steel

Both EN 1.4588 stainless steel and ACI-ASTM CA28MWV steel are iron alloys. They have 61% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4588 stainless steel and the bottom bar is ACI-ASTM CA28MWV steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
330
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34
11
Fatigue Strength, MPa 190
470
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 80
76
Tensile Strength: Ultimate (UTS), MPa 540
1080
Tensile Strength: Yield (Proof), MPa 240
870

Thermal Properties

Latent Heat of Fusion, J/g 300
270
Maximum Temperature: Corrosion, °C 420
380
Maximum Temperature: Mechanical, °C 1100
740
Melting Completion (Liquidus), °C 1450
1470
Melting Onset (Solidus), °C 1410
1430
Specific Heat Capacity, J/kg-K 460
470
Thermal Conductivity, W/m-K 15
25
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
4.6
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
5.3

Otherwise Unclassified Properties

Base Metal Price, % relative 33
11
Density, g/cm3 8.1
7.9
Embodied Carbon, kg CO2/kg material 6.2
3.1
Embodied Energy, MJ/kg 84
44
Embodied Water, L/kg 200
100

Common Calculations

PREN (Pitting Resistance) 44
17
Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
110
Resilience: Unit (Modulus of Resilience), kJ/m3 140
1920
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 18
38
Strength to Weight: Bending, points 18
30
Thermal Diffusivity, mm2/s 4.0
6.6
Thermal Shock Resistance, points 11
40

Alloy Composition

Carbon (C), % 0 to 0.020
0.2 to 0.28
Chromium (Cr), % 19 to 21
11 to 12.5
Copper (Cu), % 0.5 to 1.5
0
Iron (Fe), % 41.2 to 50.4
81.4 to 85.8
Manganese (Mn), % 0 to 2.0
0.5 to 1.0
Molybdenum (Mo), % 6.0 to 7.0
0.9 to 1.3
Nickel (Ni), % 24 to 26
0.5 to 1.0
Nitrogen (N), % 0.1 to 0.25
0
Phosphorus (P), % 0 to 0.035
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.030
Tungsten (W), % 0
0.9 to 1.3
Vanadium (V), % 0
0.2 to 0.3