MakeItFrom.com
Menu (ESC)

EN 1.4588 Stainless Steel vs. AISI 309HCb Stainless Steel

Both EN 1.4588 stainless steel and AISI 309HCb stainless steel are iron alloys. They have 81% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4588 stainless steel and the bottom bar is AISI 309HCb stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34
46
Fatigue Strength, MPa 190
210
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 80
78
Tensile Strength: Ultimate (UTS), MPa 540
590
Tensile Strength: Yield (Proof), MPa 240
230

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 420
510
Maximum Temperature: Mechanical, °C 1100
1090
Melting Completion (Liquidus), °C 1450
1420
Melting Onset (Solidus), °C 1410
1380
Specific Heat Capacity, J/kg-K 460
480
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 33
23
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 6.2
4.1
Embodied Energy, MJ/kg 84
59
Embodied Water, L/kg 200
170

Common Calculations

PREN (Pitting Resistance) 44
23
Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
210
Resilience: Unit (Modulus of Resilience), kJ/m3 140
130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 18
21
Strength to Weight: Bending, points 18
20
Thermal Diffusivity, mm2/s 4.0
4.0
Thermal Shock Resistance, points 11
13

Alloy Composition

Carbon (C), % 0 to 0.020
0.040 to 0.1
Chromium (Cr), % 19 to 21
22 to 24
Copper (Cu), % 0.5 to 1.5
0
Iron (Fe), % 41.2 to 50.4
56 to 66
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 6.0 to 7.0
0
Nickel (Ni), % 24 to 26
12 to 16
Niobium (Nb), % 0
0 to 1.1
Nitrogen (N), % 0.1 to 0.25
0
Phosphorus (P), % 0 to 0.035
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 0.75
Sulfur (S), % 0 to 0.020
0 to 0.030