MakeItFrom.com
Menu (ESC)

EN 1.4588 Stainless Steel vs. C62400 Bronze

EN 1.4588 stainless steel belongs to the iron alloys classification, while C62400 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4588 stainless steel and the bottom bar is C62400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
11 to 14
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 80
42
Tensile Strength: Ultimate (UTS), MPa 540
690 to 730
Tensile Strength: Yield (Proof), MPa 240
270 to 350

Thermal Properties

Latent Heat of Fusion, J/g 300
230
Maximum Temperature: Mechanical, °C 1100
220
Melting Completion (Liquidus), °C 1450
1040
Melting Onset (Solidus), °C 1410
1030
Specific Heat Capacity, J/kg-K 460
440
Thermal Conductivity, W/m-K 15
59
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
12
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
13

Otherwise Unclassified Properties

Base Metal Price, % relative 33
27
Density, g/cm3 8.1
8.2
Embodied Carbon, kg CO2/kg material 6.2
3.2
Embodied Energy, MJ/kg 84
53
Embodied Water, L/kg 200
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
68 to 77
Resilience: Unit (Modulus of Resilience), kJ/m3 140
320 to 550
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 18
23 to 25
Strength to Weight: Bending, points 18
21 to 22
Thermal Diffusivity, mm2/s 4.0
16
Thermal Shock Resistance, points 11
25 to 26

Alloy Composition

Aluminum (Al), % 0
10 to 11.5
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 19 to 21
0
Copper (Cu), % 0.5 to 1.5
82.8 to 88
Iron (Fe), % 41.2 to 50.4
2.0 to 4.5
Manganese (Mn), % 0 to 2.0
0 to 0.3
Molybdenum (Mo), % 6.0 to 7.0
0
Nickel (Ni), % 24 to 26
0
Nitrogen (N), % 0.1 to 0.25
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0 to 0.25
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0 to 0.2
Residuals, % 0
0 to 0.5