MakeItFrom.com
Menu (ESC)

EN 1.4588 Stainless Steel vs. S30815 Stainless Steel

Both EN 1.4588 stainless steel and S30815 stainless steel are iron alloys. They have 78% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4588 stainless steel and the bottom bar is S30815 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34
45
Fatigue Strength, MPa 190
320
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 80
77
Tensile Strength: Ultimate (UTS), MPa 540
680
Tensile Strength: Yield (Proof), MPa 240
350

Thermal Properties

Latent Heat of Fusion, J/g 300
310
Maximum Temperature: Corrosion, °C 420
430
Maximum Temperature: Mechanical, °C 1100
1020
Melting Completion (Liquidus), °C 1450
1400
Melting Onset (Solidus), °C 1410
1360
Specific Heat Capacity, J/kg-K 460
490
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 33
17
Density, g/cm3 8.1
7.7
Embodied Carbon, kg CO2/kg material 6.2
3.3
Embodied Energy, MJ/kg 84
47
Embodied Water, L/kg 200
160

Common Calculations

PREN (Pitting Resistance) 44
24
Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
260
Resilience: Unit (Modulus of Resilience), kJ/m3 140
310
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 18
25
Strength to Weight: Bending, points 18
22
Thermal Diffusivity, mm2/s 4.0
4.0
Thermal Shock Resistance, points 11
15

Alloy Composition

Carbon (C), % 0 to 0.020
0.050 to 0.1
Cerium (Ce), % 0
0.030 to 0.080
Chromium (Cr), % 19 to 21
20 to 22
Copper (Cu), % 0.5 to 1.5
0
Iron (Fe), % 41.2 to 50.4
62.8 to 68.4
Manganese (Mn), % 0 to 2.0
0 to 0.8
Molybdenum (Mo), % 6.0 to 7.0
0
Nickel (Ni), % 24 to 26
10 to 12
Nitrogen (N), % 0.1 to 0.25
0.14 to 0.2
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0 to 1.0
1.4 to 2.0
Sulfur (S), % 0 to 0.020
0 to 0.030