MakeItFrom.com
Menu (ESC)

EN 1.4589 Stainless Steel vs. ASTM Grade LC4 Steel

Both EN 1.4589 stainless steel and ASTM grade LC4 steel are iron alloys. They have 84% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4589 stainless steel and the bottom bar is ASTM grade LC4 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 17
27
Fatigue Strength, MPa 260
230
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Tensile Strength: Ultimate (UTS), MPa 650
570
Tensile Strength: Yield (Proof), MPa 440
310

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 810
410
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 25
49
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
4.6
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.4
1.8
Embodied Energy, MJ/kg 34
24
Embodied Water, L/kg 110
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 96
130
Resilience: Unit (Modulus of Resilience), kJ/m3 490
260
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 23
20
Strength to Weight: Bending, points 22
19
Thermal Diffusivity, mm2/s 6.7
13
Thermal Shock Resistance, points 23
17

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.15
Chromium (Cr), % 13.5 to 15.5
0
Iron (Fe), % 78.2 to 85
93.4 to 95.5
Manganese (Mn), % 0 to 1.0
0.5 to 0.8
Molybdenum (Mo), % 0.2 to 1.2
0
Nickel (Ni), % 1.0 to 2.5
4.0 to 5.0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 0.6
Sulfur (S), % 0 to 0.015
0 to 0.045
Titanium (Ti), % 0.3 to 0.5
0