MakeItFrom.com
Menu (ESC)

EN 1.4589 Stainless Steel vs. EN 1.4597 Stainless Steel

Both EN 1.4589 stainless steel and EN 1.4597 stainless steel are iron alloys. They have 87% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4589 stainless steel and the bottom bar is EN 1.4597 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 17
45
Fatigue Strength, MPa 260
300
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Shear Strength, MPa 400
470
Tensile Strength: Ultimate (UTS), MPa 650
680
Tensile Strength: Yield (Proof), MPa 440
330

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Maximum Temperature: Corrosion, °C 470
410
Maximum Temperature: Mechanical, °C 810
860
Melting Completion (Liquidus), °C 1450
1400
Melting Onset (Solidus), °C 1400
1350
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 25
15
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.4
2.5
Embodied Energy, MJ/kg 34
36
Embodied Water, L/kg 110
140

Common Calculations

PREN (Pitting Resistance) 17
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 96
250
Resilience: Unit (Modulus of Resilience), kJ/m3 490
280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 23
25
Strength to Weight: Bending, points 22
22
Thermal Diffusivity, mm2/s 6.7
4.1
Thermal Shock Resistance, points 23
15

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.1
Chromium (Cr), % 13.5 to 15.5
15 to 18
Copper (Cu), % 0
2.0 to 3.5
Iron (Fe), % 78.2 to 85
63 to 76.4
Manganese (Mn), % 0 to 1.0
6.5 to 9.0
Molybdenum (Mo), % 0.2 to 1.2
0 to 1.0
Nickel (Ni), % 1.0 to 2.5
0 to 3.0
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 2.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0.3 to 0.5
0