MakeItFrom.com
Menu (ESC)

EN 1.4589 Stainless Steel vs. SAE-AISI 1008 Steel

Both EN 1.4589 stainless steel and SAE-AISI 1008 steel are iron alloys. They have 82% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4589 stainless steel and the bottom bar is SAE-AISI 1008 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 17
22 to 33
Fatigue Strength, MPa 260
150 to 220
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 400
220 to 230
Tensile Strength: Ultimate (UTS), MPa 650
330 to 370
Tensile Strength: Yield (Proof), MPa 440
190 to 310

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 810
400
Melting Completion (Liquidus), °C 1450
1470
Melting Onset (Solidus), °C 1400
1430
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 25
62
Thermal Expansion, µm/m-K 11
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.8
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.4
1.4
Embodied Energy, MJ/kg 34
18
Embodied Water, L/kg 110
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 96
78 to 91
Resilience: Unit (Modulus of Resilience), kJ/m3 490
92 to 260
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 23
12 to 13
Strength to Weight: Bending, points 22
13 to 15
Thermal Diffusivity, mm2/s 6.7
17
Thermal Shock Resistance, points 23
10 to 12

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.1
Chromium (Cr), % 13.5 to 15.5
0
Iron (Fe), % 78.2 to 85
99.31 to 99.7
Manganese (Mn), % 0 to 1.0
0.3 to 0.5
Molybdenum (Mo), % 0.2 to 1.2
0
Nickel (Ni), % 1.0 to 2.5
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0 to 0.050
Titanium (Ti), % 0.3 to 0.5
0