MakeItFrom.com
Menu (ESC)

EN 1.4589 Stainless Steel vs. S32205 Stainless Steel

Both EN 1.4589 stainless steel and S32205 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 85% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4589 stainless steel and the bottom bar is S32205 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 17
28
Fatigue Strength, MPa 260
370
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 77
80
Shear Strength, MPa 400
480
Tensile Strength: Ultimate (UTS), MPa 650
740
Tensile Strength: Yield (Proof), MPa 440
510

Thermal Properties

Latent Heat of Fusion, J/g 280
300
Maximum Temperature: Corrosion, °C 470
440
Maximum Temperature: Mechanical, °C 810
1070
Melting Completion (Liquidus), °C 1450
1450
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 25
15
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
18
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.4
3.7
Embodied Energy, MJ/kg 34
50
Embodied Water, L/kg 110
160

Common Calculations

PREN (Pitting Resistance) 17
36
Resilience: Ultimate (Unit Rupture Work), MJ/m3 96
190
Resilience: Unit (Modulus of Resilience), kJ/m3 490
630
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 23
26
Strength to Weight: Bending, points 22
23
Thermal Diffusivity, mm2/s 6.7
4.0
Thermal Shock Resistance, points 23
20

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 13.5 to 15.5
22 to 23
Iron (Fe), % 78.2 to 85
63.7 to 70.4
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 0.2 to 1.2
3.0 to 3.5
Nickel (Ni), % 1.0 to 2.5
4.5 to 6.5
Nitrogen (N), % 0
0.14 to 0.2
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.020
Titanium (Ti), % 0.3 to 0.5
0