MakeItFrom.com
Menu (ESC)

EN 1.4589 Stainless Steel vs. S32808 Stainless Steel

Both EN 1.4589 stainless steel and S32808 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 78% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4589 stainless steel and the bottom bar is S32808 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 17
17
Fatigue Strength, MPa 260
350
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 77
81
Shear Strength, MPa 400
480
Tensile Strength: Ultimate (UTS), MPa 650
780
Tensile Strength: Yield (Proof), MPa 440
570

Thermal Properties

Latent Heat of Fusion, J/g 280
300
Maximum Temperature: Corrosion, °C 470
460
Maximum Temperature: Mechanical, °C 810
1100
Melting Completion (Liquidus), °C 1450
1470
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 25
14
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
24
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.4
4.0
Embodied Energy, MJ/kg 34
57
Embodied Water, L/kg 110
180

Common Calculations

PREN (Pitting Resistance) 17
40
Resilience: Ultimate (Unit Rupture Work), MJ/m3 96
120
Resilience: Unit (Modulus of Resilience), kJ/m3 490
790
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 23
27
Strength to Weight: Bending, points 22
24
Thermal Diffusivity, mm2/s 6.7
3.8
Thermal Shock Resistance, points 23
21

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 13.5 to 15.5
27 to 27.9
Iron (Fe), % 78.2 to 85
58.1 to 62.8
Manganese (Mn), % 0 to 1.0
0 to 1.1
Molybdenum (Mo), % 0.2 to 1.2
0.8 to 1.2
Nickel (Ni), % 1.0 to 2.5
7.0 to 8.2
Nitrogen (N), % 0
0.3 to 0.4
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.010
Titanium (Ti), % 0.3 to 0.5
0
Tungsten (W), % 0
2.1 to 2.5