MakeItFrom.com
Menu (ESC)

EN 1.4590 Stainless Steel vs. 511.0 Aluminum

EN 1.4590 stainless steel belongs to the iron alloys classification, while 511.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4590 stainless steel and the bottom bar is 511.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 26
3.0
Fatigue Strength, MPa 190
55
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
25
Shear Strength, MPa 310
120
Tensile Strength: Ultimate (UTS), MPa 480
150
Tensile Strength: Yield (Proof), MPa 270
83

Thermal Properties

Latent Heat of Fusion, J/g 280
400
Maximum Temperature: Mechanical, °C 860
170
Melting Completion (Liquidus), °C 1440
640
Melting Onset (Solidus), °C 1400
590
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 26
140
Thermal Expansion, µm/m-K 10
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
36
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
120

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 2.5
8.8
Embodied Energy, MJ/kg 37
150
Embodied Water, L/kg 120
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
3.7
Resilience: Unit (Modulus of Resilience), kJ/m3 190
51
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 17
15
Strength to Weight: Bending, points 18
23
Thermal Diffusivity, mm2/s 7.0
59
Thermal Shock Resistance, points 17
6.5

Alloy Composition

Aluminum (Al), % 0
93.3 to 96.2
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 16 to 17.5
0
Copper (Cu), % 0
0 to 0.15
Iron (Fe), % 79.7 to 83.7
0 to 0.5
Magnesium (Mg), % 0
3.5 to 4.5
Manganese (Mn), % 0 to 1.0
0 to 0.35
Niobium (Nb), % 0.35 to 0.55
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.3 to 0.7
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.15
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0
0 to 0.15