MakeItFrom.com
Menu (ESC)

EN 1.4590 Stainless Steel vs. AISI 440B Stainless Steel

Both EN 1.4590 stainless steel and AISI 440B stainless steel are iron alloys. They have a very high 99% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4590 stainless steel and the bottom bar is AISI 440B stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 26
3.0 to 18
Fatigue Strength, MPa 190
260 to 850
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Shear Strength, MPa 310
460 to 1110
Tensile Strength: Ultimate (UTS), MPa 480
740 to 1930
Tensile Strength: Yield (Proof), MPa 270
430 to 1860

Thermal Properties

Latent Heat of Fusion, J/g 280
280
Maximum Temperature: Corrosion, °C 470
390
Maximum Temperature: Mechanical, °C 860
870
Melting Completion (Liquidus), °C 1440
1480
Melting Onset (Solidus), °C 1400
1370
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 26
23
Thermal Expansion, µm/m-K 10
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.0
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.5
2.2
Embodied Energy, MJ/kg 37
31
Embodied Water, L/kg 120
120

Common Calculations

PREN (Pitting Resistance) 17
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
57 to 110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
27 to 70
Strength to Weight: Bending, points 18
24 to 45
Thermal Diffusivity, mm2/s 7.0
6.1
Thermal Shock Resistance, points 17
27 to 70

Alloy Composition

Carbon (C), % 0 to 0.030
0.75 to 1.0
Chromium (Cr), % 16 to 17.5
16 to 18
Iron (Fe), % 79.7 to 83.7
78.2 to 83.3
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Niobium (Nb), % 0.35 to 0.55
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.015
Zirconium (Zr), % 0 to 0.15
0