MakeItFrom.com
Menu (ESC)

EN 1.4592 Stainless Steel vs. C66900 Brass

EN 1.4592 stainless steel belongs to the iron alloys classification, while C66900 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.4592 stainless steel and the bottom bar is C66900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 23
1.1 to 26
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 82
45
Shear Strength, MPa 400
290 to 440
Tensile Strength: Ultimate (UTS), MPa 630
460 to 770
Tensile Strength: Yield (Proof), MPa 500
330 to 760

Thermal Properties

Latent Heat of Fusion, J/g 310
190
Maximum Temperature: Mechanical, °C 1100
150
Melting Completion (Liquidus), °C 1460
860
Melting Onset (Solidus), °C 1410
850
Specific Heat Capacity, J/kg-K 480
400
Thermal Expansion, µm/m-K 11
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
3.8

Otherwise Unclassified Properties

Base Metal Price, % relative 18
23
Density, g/cm3 7.7
8.2
Embodied Carbon, kg CO2/kg material 3.8
2.8
Embodied Energy, MJ/kg 52
46
Embodied Water, L/kg 180
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
4.6 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 610
460 to 2450
Stiffness to Weight: Axial, points 15
8.1
Stiffness to Weight: Bending, points 26
20
Strength to Weight: Axial, points 23
15 to 26
Strength to Weight: Bending, points 21
16 to 23
Thermal Shock Resistance, points 20
14 to 23

Alloy Composition

Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 28 to 30
0
Copper (Cu), % 0
62.5 to 64.5
Iron (Fe), % 62.6 to 68.4
0 to 0.25
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
11.5 to 12.5
Molybdenum (Mo), % 3.5 to 4.5
0
Nitrogen (N), % 0 to 0.045
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0.15 to 0.8
0
Zinc (Zn), % 0
22.5 to 26
Residuals, % 0
0 to 0.2