MakeItFrom.com
Menu (ESC)

EN 1.4592 Stainless Steel vs. C70250 Copper

EN 1.4592 stainless steel belongs to the iron alloys classification, while C70250 copper belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.4592 stainless steel and the bottom bar is C70250 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 82
44
Tensile Strength: Ultimate (UTS), MPa 630
520 to 740

Thermal Properties

Latent Heat of Fusion, J/g 310
220
Maximum Temperature: Mechanical, °C 1100
210
Melting Completion (Liquidus), °C 1460
1100
Melting Onset (Solidus), °C 1410
1080
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 17
170
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
36 to 50
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
37 to 51

Otherwise Unclassified Properties

Base Metal Price, % relative 18
31
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 3.8
2.9
Embodied Energy, MJ/kg 52
45
Embodied Water, L/kg 180
310

Common Calculations

Stiffness to Weight: Axial, points 15
7.4
Stiffness to Weight: Bending, points 26
18
Strength to Weight: Axial, points 23
16 to 23
Strength to Weight: Bending, points 21
16 to 21
Thermal Diffusivity, mm2/s 4.6
49
Thermal Shock Resistance, points 20
18 to 26

Alloy Composition

Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 28 to 30
0
Copper (Cu), % 0
92.7 to 97.5
Iron (Fe), % 62.6 to 68.4
0
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.050 to 0.3
Manganese (Mn), % 0 to 1.0
0 to 0.1
Molybdenum (Mo), % 3.5 to 4.5
0
Nickel (Ni), % 0
2.2 to 4.2
Nitrogen (N), % 0 to 0.045
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0.25 to 1.2
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0.15 to 0.8
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5