MakeItFrom.com
Menu (ESC)

EN 1.4592 Stainless Steel vs. C87700 Bronze

EN 1.4592 stainless steel belongs to the iron alloys classification, while C87700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4592 stainless steel and the bottom bar is C87700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 23
3.6
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 82
42
Tensile Strength: Ultimate (UTS), MPa 630
300
Tensile Strength: Yield (Proof), MPa 500
120

Thermal Properties

Latent Heat of Fusion, J/g 310
250
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1460
980
Melting Onset (Solidus), °C 1410
900
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 17
120
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
45
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
48

Otherwise Unclassified Properties

Base Metal Price, % relative 18
29
Density, g/cm3 7.7
8.5
Embodied Carbon, kg CO2/kg material 3.8
2.7
Embodied Energy, MJ/kg 52
45
Embodied Water, L/kg 180
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
8.6
Resilience: Unit (Modulus of Resilience), kJ/m3 610
64
Stiffness to Weight: Axial, points 15
7.4
Stiffness to Weight: Bending, points 26
19
Strength to Weight: Axial, points 23
9.8
Strength to Weight: Bending, points 21
12
Thermal Diffusivity, mm2/s 4.6
34
Thermal Shock Resistance, points 20
11

Alloy Composition

Antimony (Sb), % 0
0 to 0.1
Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 28 to 30
0
Copper (Cu), % 0
87.5 to 90.5
Iron (Fe), % 62.6 to 68.4
0 to 0.5
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 1.0
0 to 0.8
Molybdenum (Mo), % 3.5 to 4.5
0
Nickel (Ni), % 0
0 to 0.25
Nitrogen (N), % 0 to 0.045
0
Phosphorus (P), % 0 to 0.030
0 to 0.15
Silicon (Si), % 0 to 1.0
2.5 to 3.5
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 2.0
Titanium (Ti), % 0.15 to 0.8
0
Zinc (Zn), % 0
7.0 to 9.0
Residuals, % 0
0 to 0.8