MakeItFrom.com
Menu (ESC)

EN 1.4592 Stainless Steel vs. C93900 Bronze

EN 1.4592 stainless steel belongs to the iron alloys classification, while C93900 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4592 stainless steel and the bottom bar is C93900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
95
Elongation at Break, % 23
5.6
Poisson's Ratio 0.27
0.36
Shear Modulus, GPa 82
35
Tensile Strength: Ultimate (UTS), MPa 630
190
Tensile Strength: Yield (Proof), MPa 500
130

Thermal Properties

Latent Heat of Fusion, J/g 310
170
Maximum Temperature: Mechanical, °C 1100
140
Melting Completion (Liquidus), °C 1460
940
Melting Onset (Solidus), °C 1410
850
Specific Heat Capacity, J/kg-K 480
340
Thermal Conductivity, W/m-K 17
52
Thermal Expansion, µm/m-K 11
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
11
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
11

Otherwise Unclassified Properties

Base Metal Price, % relative 18
30
Density, g/cm3 7.7
9.1
Embodied Carbon, kg CO2/kg material 3.8
3.0
Embodied Energy, MJ/kg 52
49
Embodied Water, L/kg 180
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
9.5
Resilience: Unit (Modulus of Resilience), kJ/m3 610
83
Stiffness to Weight: Axial, points 15
5.8
Stiffness to Weight: Bending, points 26
17
Strength to Weight: Axial, points 23
5.9
Strength to Weight: Bending, points 21
8.1
Thermal Diffusivity, mm2/s 4.6
17
Thermal Shock Resistance, points 20
7.5

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.5
Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 28 to 30
0
Copper (Cu), % 0
76.5 to 79.5
Iron (Fe), % 62.6 to 68.4
0 to 0.4
Lead (Pb), % 0
14 to 18
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 3.5 to 4.5
0
Nickel (Ni), % 0
0 to 0.8
Nitrogen (N), % 0 to 0.045
0
Phosphorus (P), % 0 to 0.030
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.010
0 to 0.080
Tin (Sn), % 0
5.0 to 7.0
Titanium (Ti), % 0.15 to 0.8
0
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0
0 to 1.1