MakeItFrom.com
Menu (ESC)

EN 1.4592 Stainless Steel vs. C95520 Bronze

EN 1.4592 stainless steel belongs to the iron alloys classification, while C95520 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4592 stainless steel and the bottom bar is C95520 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 23
2.6
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 82
44
Tensile Strength: Ultimate (UTS), MPa 630
970
Tensile Strength: Yield (Proof), MPa 500
530

Thermal Properties

Latent Heat of Fusion, J/g 310
240
Maximum Temperature: Mechanical, °C 1100
240
Melting Completion (Liquidus), °C 1460
1070
Melting Onset (Solidus), °C 1410
1020
Specific Heat Capacity, J/kg-K 480
450
Thermal Conductivity, W/m-K 17
40
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
11
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
12

Otherwise Unclassified Properties

Base Metal Price, % relative 18
29
Density, g/cm3 7.7
8.2
Embodied Carbon, kg CO2/kg material 3.8
3.6
Embodied Energy, MJ/kg 52
58
Embodied Water, L/kg 180
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
21
Resilience: Unit (Modulus of Resilience), kJ/m3 610
1210
Stiffness to Weight: Axial, points 15
8.0
Stiffness to Weight: Bending, points 26
20
Strength to Weight: Axial, points 23
33
Strength to Weight: Bending, points 21
27
Thermal Diffusivity, mm2/s 4.6
11
Thermal Shock Resistance, points 20
33

Alloy Composition

Aluminum (Al), % 0
10.5 to 11.5
Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 28 to 30
0 to 0.050
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 0
74.5 to 81.3
Iron (Fe), % 62.6 to 68.4
4.0 to 5.5
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0 to 1.0
0 to 1.5
Molybdenum (Mo), % 3.5 to 4.5
0
Nickel (Ni), % 0
4.2 to 6.0
Nitrogen (N), % 0 to 0.045
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0 to 0.15
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.25
Titanium (Ti), % 0.15 to 0.8
0
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.5