MakeItFrom.com
Menu (ESC)

EN 1.4592 Stainless Steel vs. C99500 Copper

EN 1.4592 stainless steel belongs to the iron alloys classification, while C99500 copper belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4592 stainless steel and the bottom bar is C99500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 23
13
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 82
45
Tensile Strength: Ultimate (UTS), MPa 630
540
Tensile Strength: Yield (Proof), MPa 500
310

Thermal Properties

Latent Heat of Fusion, J/g 310
240
Maximum Temperature: Mechanical, °C 1100
210
Melting Completion (Liquidus), °C 1460
1090
Melting Onset (Solidus), °C 1410
1040
Specific Heat Capacity, J/kg-K 480
400
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
10
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
10

Otherwise Unclassified Properties

Base Metal Price, % relative 18
30
Density, g/cm3 7.7
8.7
Embodied Carbon, kg CO2/kg material 3.8
3.0
Embodied Energy, MJ/kg 52
47
Embodied Water, L/kg 180
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
63
Resilience: Unit (Modulus of Resilience), kJ/m3 610
410
Stiffness to Weight: Axial, points 15
7.7
Stiffness to Weight: Bending, points 26
19
Strength to Weight: Axial, points 23
17
Strength to Weight: Bending, points 21
17
Thermal Shock Resistance, points 20
19

Alloy Composition

Aluminum (Al), % 0
0.5 to 2.0
Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 28 to 30
0
Copper (Cu), % 0
82.5 to 92
Iron (Fe), % 62.6 to 68.4
3.0 to 5.0
Lead (Pb), % 0
0 to 0.25
Manganese (Mn), % 0 to 1.0
0 to 0.5
Molybdenum (Mo), % 3.5 to 4.5
0
Nickel (Ni), % 0
3.5 to 5.5
Nitrogen (N), % 0 to 0.045
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0.5 to 2.0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0.15 to 0.8
0
Zinc (Zn), % 0
0.5 to 2.0
Residuals, % 0
0 to 0.3