MakeItFrom.com
Menu (ESC)

EN 1.4592 Stainless Steel vs. S44537 Stainless Steel

Both EN 1.4592 stainless steel and S44537 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 88% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4592 stainless steel and the bottom bar is S44537 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 23
21
Fatigue Strength, MPa 340
230
Poisson's Ratio 0.27
0.27
Shear Modulus, GPa 82
79
Shear Strength, MPa 400
320
Tensile Strength: Ultimate (UTS), MPa 630
510
Tensile Strength: Yield (Proof), MPa 500
360

Thermal Properties

Latent Heat of Fusion, J/g 310
290
Maximum Temperature: Corrosion, °C 550
530
Maximum Temperature: Mechanical, °C 1100
1000
Melting Completion (Liquidus), °C 1460
1480
Melting Onset (Solidus), °C 1410
1430
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 17
21
Thermal Expansion, µm/m-K 11
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 18
19
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 3.8
3.4
Embodied Energy, MJ/kg 52
50
Embodied Water, L/kg 180
140

Common Calculations

PREN (Pitting Resistance) 43
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
95
Resilience: Unit (Modulus of Resilience), kJ/m3 610
320
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 26
25
Strength to Weight: Axial, points 23
18
Strength to Weight: Bending, points 21
18
Thermal Diffusivity, mm2/s 4.6
5.6
Thermal Shock Resistance, points 20
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0 to 0.025
0 to 0.030
Chromium (Cr), % 28 to 30
20 to 24
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 62.6 to 68.4
69 to 78.6
Lanthanum (La), % 0
0.040 to 0.2
Manganese (Mn), % 0 to 1.0
0 to 0.8
Molybdenum (Mo), % 3.5 to 4.5
0
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0 to 0.045
0 to 0.040
Phosphorus (P), % 0 to 0.030
0 to 0.050
Silicon (Si), % 0 to 1.0
0.1 to 0.6
Sulfur (S), % 0 to 0.010
0 to 0.0060
Titanium (Ti), % 0.15 to 0.8
0.020 to 0.2
Tungsten (W), % 0
1.0 to 3.0