MakeItFrom.com
Menu (ESC)

EN 1.4595 Stainless Steel vs. SAE-AISI 5120 Steel

Both EN 1.4595 stainless steel and SAE-AISI 5120 steel are iron alloys. Both are furnished in the annealed condition. They have 85% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4595 stainless steel and the bottom bar is SAE-AISI 5120 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 29
16
Fatigue Strength, MPa 180
210
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Shear Strength, MPa 310
310
Tensile Strength: Ultimate (UTS), MPa 470
500
Tensile Strength: Yield (Proof), MPa 250
320

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 810
420
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 30
47
Thermal Expansion, µm/m-K 10
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 10
2.1
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.4
1.4
Embodied Energy, MJ/kg 34
19
Embodied Water, L/kg 110
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
71
Resilience: Unit (Modulus of Resilience), kJ/m3 150
280
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 17
18
Strength to Weight: Bending, points 17
18
Thermal Diffusivity, mm2/s 8.1
13
Thermal Shock Resistance, points 17
16

Alloy Composition

Carbon (C), % 0 to 0.020
0.17 to 0.22
Chromium (Cr), % 14 to 16
0.7 to 0.9
Iron (Fe), % 81.3 to 85.8
97.6 to 98.3
Manganese (Mn), % 0 to 1.0
0.7 to 0.9
Niobium (Nb), % 0.2 to 0.6
0
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.025
0 to 0.035
Silicon (Si), % 0 to 1.0
0.15 to 0.35
Sulfur (S), % 0 to 0.015
0 to 0.040