MakeItFrom.com
Menu (ESC)

EN 1.4597 Stainless Steel vs. Grade Ti-Pd7B Titanium

EN 1.4597 stainless steel belongs to the iron alloys classification, while grade Ti-Pd7B titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4597 stainless steel and the bottom bar is grade Ti-Pd7B titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
180
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 45
17
Fatigue Strength, MPa 300
200
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 680
390
Tensile Strength: Yield (Proof), MPa 330
310

Thermal Properties

Latent Heat of Fusion, J/g 290
420
Maximum Temperature: Mechanical, °C 860
320
Melting Completion (Liquidus), °C 1400
1660
Melting Onset (Solidus), °C 1350
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 15
22
Thermal Expansion, µm/m-K 17
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
7.1

Otherwise Unclassified Properties

Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 2.5
49
Embodied Energy, MJ/kg 36
840
Embodied Water, L/kg 140
520

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
62
Resilience: Unit (Modulus of Resilience), kJ/m3 280
440
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 25
24
Strength to Weight: Bending, points 22
26
Thermal Diffusivity, mm2/s 4.1
8.9
Thermal Shock Resistance, points 15
30

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.1
Chromium (Cr), % 15 to 18
0
Copper (Cu), % 2.0 to 3.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 63 to 76.4
0 to 0.2
Manganese (Mn), % 6.5 to 9.0
0
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 0 to 3.0
0 to 0.050
Nitrogen (N), % 0.1 to 0.3
0
Oxygen (O), % 0
0 to 0.4
Palladium (Pd), % 0
0.12 to 0.3
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
98.8 to 99.9
Residuals, % 0
0 to 0.4