MakeItFrom.com
Menu (ESC)

EN 1.4597 Stainless Steel vs. C81500 Copper

EN 1.4597 stainless steel belongs to the iron alloys classification, while C81500 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4597 stainless steel and the bottom bar is C81500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
110
Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 45
17
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
44
Tensile Strength: Ultimate (UTS), MPa 680
350
Tensile Strength: Yield (Proof), MPa 330
280

Thermal Properties

Latent Heat of Fusion, J/g 290
210
Maximum Temperature: Mechanical, °C 860
200
Melting Completion (Liquidus), °C 1400
1090
Melting Onset (Solidus), °C 1350
1080
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 15
320
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
82
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
83

Otherwise Unclassified Properties

Base Metal Price, % relative 11
31
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 2.5
2.6
Embodied Energy, MJ/kg 36
41
Embodied Water, L/kg 140
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
56
Resilience: Unit (Modulus of Resilience), kJ/m3 280
330
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 25
11
Strength to Weight: Bending, points 22
12
Thermal Diffusivity, mm2/s 4.1
91
Thermal Shock Resistance, points 15
12

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 15 to 18
0.4 to 1.5
Copper (Cu), % 2.0 to 3.5
97.4 to 99.6
Iron (Fe), % 63 to 76.4
0 to 0.1
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 6.5 to 9.0
0
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 0 to 3.0
0
Nitrogen (N), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5