MakeItFrom.com
Menu (ESC)

EN 1.4598 Stainless Steel vs. AISI 439 Stainless Steel

Both EN 1.4598 stainless steel and AISI 439 stainless steel are iron alloys. They have 84% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4598 stainless steel and the bottom bar is AISI 439 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
160
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 46
23
Fatigue Strength, MPa 210
170
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Shear Strength, MPa 420
310
Tensile Strength: Ultimate (UTS), MPa 600
490
Tensile Strength: Yield (Proof), MPa 230
250

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Corrosion, °C 410
530
Maximum Temperature: Mechanical, °C 950
890
Melting Completion (Liquidus), °C 1430
1510
Melting Onset (Solidus), °C 1390
1430
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
25
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 19
9.0
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 3.8
2.3
Embodied Energy, MJ/kg 52
34
Embodied Water, L/kg 150
120

Common Calculations

PREN (Pitting Resistance) 26
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
95
Resilience: Unit (Modulus of Resilience), kJ/m3 130
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
18
Strength to Weight: Bending, points 20
18
Thermal Diffusivity, mm2/s 4.1
6.7
Thermal Shock Resistance, points 14
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 16.5 to 18.5
17 to 19
Copper (Cu), % 1.3 to 1.8
0
Iron (Fe), % 60.8 to 70.1
77.1 to 82.8
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 2.0 to 2.5
0
Nickel (Ni), % 10 to 13
0 to 0.5
Nitrogen (N), % 0 to 0.1
0 to 0.030
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0.1 to 0.2
0 to 0.030
Titanium (Ti), % 0
0.2 to 1.1