MakeItFrom.com
Menu (ESC)

EN 1.4598 Stainless Steel vs. EN 1.4886 Stainless Steel

Both EN 1.4598 stainless steel and EN 1.4886 stainless steel are iron alloys. Both are furnished in the solution annealed (AT) condition. They have 74% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4598 stainless steel and the bottom bar is EN 1.4886 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
170
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 46
45
Fatigue Strength, MPa 210
280
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Shear Strength, MPa 420
400
Tensile Strength: Ultimate (UTS), MPa 600
580
Tensile Strength: Yield (Proof), MPa 230
300

Thermal Properties

Latent Heat of Fusion, J/g 290
320
Maximum Temperature: Corrosion, °C 410
420
Maximum Temperature: Mechanical, °C 950
1100
Melting Completion (Liquidus), °C 1430
1390
Melting Onset (Solidus), °C 1390
1340
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
12
Thermal Expansion, µm/m-K 16
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 19
31
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 3.8
5.4
Embodied Energy, MJ/kg 52
76
Embodied Water, L/kg 150
190

Common Calculations

PREN (Pitting Resistance) 26
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
220
Resilience: Unit (Modulus of Resilience), kJ/m3 130
230
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 21
20
Strength to Weight: Bending, points 20
19
Thermal Diffusivity, mm2/s 4.1
3.1
Thermal Shock Resistance, points 14
14

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.15
Chromium (Cr), % 16.5 to 18.5
17 to 20
Copper (Cu), % 1.3 to 1.8
0
Iron (Fe), % 60.8 to 70.1
38.7 to 49
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 2.0 to 2.5
0
Nickel (Ni), % 10 to 13
33 to 37
Nitrogen (N), % 0 to 0.1
0 to 0.1
Phosphorus (P), % 0 to 0.045
0 to 0.030
Silicon (Si), % 0 to 1.0
1.0 to 2.0
Sulfur (S), % 0.1 to 0.2
0 to 0.015