MakeItFrom.com
Menu (ESC)

EN 1.4598 Stainless Steel vs. EN 1.4983 Stainless Steel

Both EN 1.4598 stainless steel and EN 1.4983 stainless steel are iron alloys. Both are furnished in the solution annealed (AT) condition. They have a very high 98% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4598 stainless steel and the bottom bar is EN 1.4983 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 46
40
Fatigue Strength, MPa 210
200
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
78
Shear Strength, MPa 420
430
Tensile Strength: Ultimate (UTS), MPa 600
630
Tensile Strength: Yield (Proof), MPa 230
230

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 410
520
Maximum Temperature: Mechanical, °C 950
940
Melting Completion (Liquidus), °C 1430
1440
Melting Onset (Solidus), °C 1390
1400
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 19
19
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 3.8
4.1
Embodied Energy, MJ/kg 52
56
Embodied Water, L/kg 150
150

Common Calculations

PREN (Pitting Resistance) 26
24
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
200
Resilience: Unit (Modulus of Resilience), kJ/m3 130
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
22
Strength to Weight: Bending, points 20
21
Thermal Diffusivity, mm2/s 4.1
4.0
Thermal Shock Resistance, points 14
14

Alloy Composition

Boron (B), % 0
0.0015 to 0.0060
Carbon (C), % 0 to 0.030
0.040 to 0.080
Chromium (Cr), % 16.5 to 18.5
16 to 18
Copper (Cu), % 1.3 to 1.8
0
Iron (Fe), % 60.8 to 70.1
61.8 to 69.6
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 2.0 to 2.5
2.0 to 2.5
Nickel (Ni), % 10 to 13
12 to 14
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 0.75
Sulfur (S), % 0.1 to 0.2
0 to 0.015
Titanium (Ti), % 0
0.4 to 0.8