MakeItFrom.com
Menu (ESC)

EN 1.4598 Stainless Steel vs. EN 1.7706 Steel

Both EN 1.4598 stainless steel and EN 1.7706 steel are iron alloys. They have 69% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4598 stainless steel and the bottom bar is EN 1.7706 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
210
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 46
17
Fatigue Strength, MPa 210
330
Impact Strength: V-Notched Charpy, J 90
30
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Tensile Strength: Ultimate (UTS), MPa 600
690
Tensile Strength: Yield (Proof), MPa 230
500

Thermal Properties

Latent Heat of Fusion, J/g 290
260
Maximum Temperature: Mechanical, °C 950
440
Melting Completion (Liquidus), °C 1430
1470
Melting Onset (Solidus), °C 1390
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
40
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 19
3.7
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 3.8
2.3
Embodied Energy, MJ/kg 52
32
Embodied Water, L/kg 150
57

Common Calculations

PREN (Pitting Resistance) 26
4.7
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
110
Resilience: Unit (Modulus of Resilience), kJ/m3 130
670
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 21
24
Strength to Weight: Bending, points 20
22
Thermal Diffusivity, mm2/s 4.1
11
Thermal Shock Resistance, points 14
20

Alloy Composition

Carbon (C), % 0 to 0.030
0.15 to 0.2
Chromium (Cr), % 16.5 to 18.5
1.2 to 1.5
Copper (Cu), % 1.3 to 1.8
0 to 0.3
Iron (Fe), % 60.8 to 70.1
94.7 to 97.1
Manganese (Mn), % 0 to 2.0
0.5 to 0.9
Molybdenum (Mo), % 2.0 to 2.5
0.9 to 1.1
Nickel (Ni), % 10 to 13
0 to 0.4
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.6
Sulfur (S), % 0.1 to 0.2
0 to 0.015
Vanadium (V), % 0
0.2 to 0.3