MakeItFrom.com
Menu (ESC)

EN 1.4598 Stainless Steel vs. N06985 Nickel

EN 1.4598 stainless steel belongs to the iron alloys classification, while N06985 nickel belongs to the nickel alloys. They have 53% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4598 stainless steel and the bottom bar is N06985 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 46
45
Fatigue Strength, MPa 210
220
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
80
Shear Strength, MPa 420
480
Tensile Strength: Ultimate (UTS), MPa 600
690
Tensile Strength: Yield (Proof), MPa 230
260

Thermal Properties

Latent Heat of Fusion, J/g 290
320
Maximum Temperature: Mechanical, °C 950
990
Melting Completion (Liquidus), °C 1430
1350
Melting Onset (Solidus), °C 1390
1260
Specific Heat Capacity, J/kg-K 470
450
Thermal Conductivity, W/m-K 15
10
Thermal Expansion, µm/m-K 16
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 19
55
Density, g/cm3 7.9
8.4
Embodied Carbon, kg CO2/kg material 3.8
8.8
Embodied Energy, MJ/kg 52
120
Embodied Water, L/kg 150
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
250
Resilience: Unit (Modulus of Resilience), kJ/m3 130
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 21
23
Strength to Weight: Bending, points 20
21
Thermal Diffusivity, mm2/s 4.1
2.6
Thermal Shock Resistance, points 14
16

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.015
Chromium (Cr), % 16.5 to 18.5
21 to 23.5
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 1.3 to 1.8
1.5 to 2.5
Iron (Fe), % 60.8 to 70.1
18 to 21
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 2.0 to 2.5
6.0 to 8.0
Nickel (Ni), % 10 to 13
35.9 to 53.5
Niobium (Nb), % 0
0 to 0.5
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0.1 to 0.2
0 to 0.030
Tungsten (W), % 0
0 to 1.5