MakeItFrom.com
Menu (ESC)

EN 1.4598 Stainless Steel vs. S42300 Stainless Steel

Both EN 1.4598 stainless steel and S42300 stainless steel are iron alloys. They have 81% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4598 stainless steel and the bottom bar is S42300 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
330
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 46
9.1
Fatigue Strength, MPa 210
440
Impact Strength: V-Notched Charpy, J 90
13
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Shear Strength, MPa 420
650
Tensile Strength: Ultimate (UTS), MPa 600
1100
Tensile Strength: Yield (Proof), MPa 230
850

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Corrosion, °C 410
380
Maximum Temperature: Mechanical, °C 950
750
Melting Completion (Liquidus), °C 1430
1470
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
25
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
4.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
5.2

Otherwise Unclassified Properties

Base Metal Price, % relative 19
9.5
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 3.8
3.2
Embodied Energy, MJ/kg 52
44
Embodied Water, L/kg 150
110

Common Calculations

PREN (Pitting Resistance) 26
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
93
Resilience: Unit (Modulus of Resilience), kJ/m3 130
1840
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
39
Strength to Weight: Bending, points 20
30
Thermal Diffusivity, mm2/s 4.1
6.8
Thermal Shock Resistance, points 14
40

Alloy Composition

Carbon (C), % 0 to 0.030
0.27 to 0.32
Chromium (Cr), % 16.5 to 18.5
11 to 12
Copper (Cu), % 1.3 to 1.8
0
Iron (Fe), % 60.8 to 70.1
82 to 85.1
Manganese (Mn), % 0 to 2.0
1.0 to 1.4
Molybdenum (Mo), % 2.0 to 2.5
2.5 to 3.0
Nickel (Ni), % 10 to 13
0 to 0.5
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0.1 to 0.2
0 to 0.025
Vanadium (V), % 0
0.2 to 0.3