MakeItFrom.com
Menu (ESC)

EN 1.4600 Stainless Steel vs. EN 1.4017 Stainless Steel

Both EN 1.4600 stainless steel and EN 1.4017 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 94% of their average alloy composition in common.

For each property being compared, the top bar is EN 1.4600 stainless steel and the bottom bar is EN 1.4017 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 23
14
Fatigue Strength, MPa 290
220
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
77
Shear Strength, MPa 360
350
Tensile Strength: Ultimate (UTS), MPa 580
580
Tensile Strength: Yield (Proof), MPa 430
390

Thermal Properties

Latent Heat of Fusion, J/g 270
280
Maximum Temperature: Corrosion, °C 420
410
Maximum Temperature: Mechanical, °C 730
870
Melting Completion (Liquidus), °C 1440
1440
Melting Onset (Solidus), °C 1400
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 27
30
Thermal Expansion, µm/m-K 10
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
9.5
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.0
2.2
Embodied Energy, MJ/kg 28
31
Embodied Water, L/kg 100
120

Common Calculations

PREN (Pitting Resistance) 12
17
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
71
Resilience: Unit (Modulus of Resilience), kJ/m3 470
380
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
21
Strength to Weight: Bending, points 20
20
Thermal Diffusivity, mm2/s 7.3
8.1
Thermal Shock Resistance, points 21
20

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 11 to 13
16 to 18
Iron (Fe), % 82 to 87.7
78.3 to 82.8
Manganese (Mn), % 1.0 to 2.5
0 to 1.0
Nickel (Ni), % 0.3 to 1.0
1.2 to 1.6
Nitrogen (N), % 0 to 0.025
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0 to 0.35
0