MakeItFrom.com
Menu (ESC)

EN 1.4600 Stainless Steel vs. C95700 Bronze

EN 1.4600 stainless steel belongs to the iron alloys classification, while C95700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4600 stainless steel and the bottom bar is C95700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
130
Elongation at Break, % 23
23
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
47
Tensile Strength: Ultimate (UTS), MPa 580
680
Tensile Strength: Yield (Proof), MPa 430
310

Thermal Properties

Latent Heat of Fusion, J/g 270
230
Maximum Temperature: Mechanical, °C 730
220
Melting Completion (Liquidus), °C 1440
990
Melting Onset (Solidus), °C 1400
950
Specific Heat Capacity, J/kg-K 480
440
Thermal Conductivity, W/m-K 27
12
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
26
Density, g/cm3 7.7
8.2
Embodied Carbon, kg CO2/kg material 2.0
3.3
Embodied Energy, MJ/kg 28
54
Embodied Water, L/kg 100
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
130
Resilience: Unit (Modulus of Resilience), kJ/m3 470
390
Stiffness to Weight: Axial, points 14
8.5
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 21
23
Strength to Weight: Bending, points 20
21
Thermal Diffusivity, mm2/s 7.3
3.3
Thermal Shock Resistance, points 21
21

Alloy Composition

Aluminum (Al), % 0
7.0 to 8.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 11 to 13
0
Copper (Cu), % 0
71 to 78.5
Iron (Fe), % 82 to 87.7
2.0 to 4.0
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 1.0 to 2.5
11 to 14
Nickel (Ni), % 0.3 to 1.0
1.5 to 3.0
Nitrogen (N), % 0 to 0.025
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 0.35
0
Residuals, % 0
0 to 0.5