MakeItFrom.com
Menu (ESC)

EN 1.4600 Stainless Steel vs. S43940 Stainless Steel

Both EN 1.4600 stainless steel and S43940 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 93% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4600 stainless steel and the bottom bar is S43940 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 23
21
Fatigue Strength, MPa 290
180
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
77
Shear Strength, MPa 360
310
Tensile Strength: Ultimate (UTS), MPa 580
490
Tensile Strength: Yield (Proof), MPa 430
280

Thermal Properties

Latent Heat of Fusion, J/g 270
280
Maximum Temperature: Corrosion, °C 420
540
Maximum Temperature: Mechanical, °C 730
890
Melting Completion (Liquidus), °C 1440
1440
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 27
25
Thermal Expansion, µm/m-K 10
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
12
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.0
2.6
Embodied Energy, MJ/kg 28
38
Embodied Water, L/kg 100
120

Common Calculations

PREN (Pitting Resistance) 12
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
86
Resilience: Unit (Modulus of Resilience), kJ/m3 470
200
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
18
Strength to Weight: Bending, points 20
18
Thermal Diffusivity, mm2/s 7.3
6.8
Thermal Shock Resistance, points 21
18

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 11 to 13
17.5 to 18.5
Iron (Fe), % 82 to 87.7
78.2 to 82.1
Manganese (Mn), % 1.0 to 2.5
0 to 1.0
Nickel (Ni), % 0.3 to 1.0
0
Niobium (Nb), % 0
0.3 to 0.6
Nitrogen (N), % 0 to 0.025
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0 to 0.35
0.1 to 0.6