MakeItFrom.com
Menu (ESC)

EN 1.4606 Stainless Steel vs. 5059 Aluminum

EN 1.4606 stainless steel belongs to the iron alloys classification, while 5059 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4606 stainless steel and the bottom bar is 5059 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 23 to 39
11 to 25
Fatigue Strength, MPa 240 to 420
170 to 240
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 75
26
Shear Strength, MPa 410 to 640
220 to 250
Tensile Strength: Ultimate (UTS), MPa 600 to 1020
350 to 410
Tensile Strength: Yield (Proof), MPa 280 to 630
170 to 300

Thermal Properties

Latent Heat of Fusion, J/g 300
390
Maximum Temperature: Corrosion, °C 770
65
Maximum Temperature: Mechanical, °C 910
210
Melting Completion (Liquidus), °C 1430
650
Melting Onset (Solidus), °C 1380
510
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 14
110
Thermal Expansion, µm/m-K 11
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
29
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
95

Otherwise Unclassified Properties

Base Metal Price, % relative 26
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 6.0
9.1
Embodied Energy, MJ/kg 87
160
Embodied Water, L/kg 170
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190 to 200
42 to 75
Resilience: Unit (Modulus of Resilience), kJ/m3 200 to 1010
220 to 650
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 21 to 36
36 to 42
Strength to Weight: Bending, points 20 to 28
41 to 45
Thermal Diffusivity, mm2/s 3.7
44
Thermal Shock Resistance, points 21 to 35
16 to 18

Alloy Composition

Aluminum (Al), % 0 to 0.35
89.9 to 94
Boron (B), % 0.0010 to 0.010
0
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 13 to 16
0 to 0.25
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 49.2 to 59
0 to 0.5
Magnesium (Mg), % 0
5.0 to 6.0
Manganese (Mn), % 1.0 to 2.0
0.6 to 1.2
Molybdenum (Mo), % 1.0 to 1.5
0
Nickel (Ni), % 24 to 27
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 1.0
0 to 0.45
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 1.9 to 2.3
0 to 0.2
Vanadium (V), % 0.1 to 0.5
0
Zinc (Zn), % 0
0.4 to 0.9
Zirconium (Zr), % 0
0.050 to 0.25
Residuals, % 0
0 to 0.15