MakeItFrom.com
Menu (ESC)

EN 1.4606 Stainless Steel vs. 6262A Aluminum

EN 1.4606 stainless steel belongs to the iron alloys classification, while 6262A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4606 stainless steel and the bottom bar is 6262A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 23 to 39
4.5 to 11
Fatigue Strength, MPa 240 to 420
94 to 110
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 75
26
Shear Strength, MPa 410 to 640
190 to 240
Tensile Strength: Ultimate (UTS), MPa 600 to 1020
310 to 410
Tensile Strength: Yield (Proof), MPa 280 to 630
270 to 370

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 910
160
Melting Completion (Liquidus), °C 1430
640
Melting Onset (Solidus), °C 1380
580
Specific Heat Capacity, J/kg-K 470
890
Thermal Conductivity, W/m-K 14
170
Thermal Expansion, µm/m-K 11
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
45
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
140

Otherwise Unclassified Properties

Base Metal Price, % relative 26
11
Density, g/cm3 7.9
2.8
Embodied Carbon, kg CO2/kg material 6.0
8.4
Embodied Energy, MJ/kg 87
150
Embodied Water, L/kg 170
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190 to 200
17 to 34
Resilience: Unit (Modulus of Resilience), kJ/m3 200 to 1010
540 to 1000
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
49
Strength to Weight: Axial, points 21 to 36
31 to 41
Strength to Weight: Bending, points 20 to 28
36 to 44
Thermal Diffusivity, mm2/s 3.7
67
Thermal Shock Resistance, points 21 to 35
14 to 18

Alloy Composition

Aluminum (Al), % 0 to 0.35
94.2 to 97.8
Bismuth (Bi), % 0
0.4 to 0.9
Boron (B), % 0.0010 to 0.010
0
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 13 to 16
0.040 to 0.14
Copper (Cu), % 0
0.15 to 0.4
Iron (Fe), % 49.2 to 59
0 to 0.7
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 1.0 to 2.0
0 to 0.15
Molybdenum (Mo), % 1.0 to 1.5
0
Nickel (Ni), % 24 to 27
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 1.0
0.4 to 0.8
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.4 to 1.0
Titanium (Ti), % 1.9 to 2.3
0 to 0.1
Vanadium (V), % 0.1 to 0.5
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15