MakeItFrom.com
Menu (ESC)

EN 1.4606 Stainless Steel vs. AISI 310HCb Stainless Steel

Both EN 1.4606 stainless steel and AISI 310HCb stainless steel are iron alloys. They have 89% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4606 stainless steel and the bottom bar is AISI 310HCb stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 23 to 39
46
Fatigue Strength, MPa 240 to 420
210
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 75
78
Shear Strength, MPa 410 to 640
410
Tensile Strength: Ultimate (UTS), MPa 600 to 1020
590
Tensile Strength: Yield (Proof), MPa 280 to 630
230

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 770
520
Maximum Temperature: Mechanical, °C 910
1100
Melting Completion (Liquidus), °C 1430
1410
Melting Onset (Solidus), °C 1380
1370
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 14
15
Thermal Expansion, µm/m-K 11
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 26
28
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 6.0
4.8
Embodied Energy, MJ/kg 87
69
Embodied Water, L/kg 170
190

Common Calculations

PREN (Pitting Resistance) 19
25
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190 to 200
210
Resilience: Unit (Modulus of Resilience), kJ/m3 200 to 1010
130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 21 to 36
21
Strength to Weight: Bending, points 20 to 28
20
Thermal Diffusivity, mm2/s 3.7
3.9
Thermal Shock Resistance, points 21 to 35
13

Alloy Composition

Aluminum (Al), % 0 to 0.35
0
Boron (B), % 0.0010 to 0.010
0
Carbon (C), % 0 to 0.080
0.040 to 0.1
Chromium (Cr), % 13 to 16
24 to 26
Iron (Fe), % 49.2 to 59
48 to 57
Manganese (Mn), % 1.0 to 2.0
0 to 2.0
Molybdenum (Mo), % 1.0 to 1.5
0
Nickel (Ni), % 24 to 27
19 to 22
Niobium (Nb), % 0
0 to 1.1
Phosphorus (P), % 0 to 0.025
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 0.75
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 1.9 to 2.3
0
Vanadium (V), % 0.1 to 0.5
0