MakeItFrom.com
Menu (ESC)

EN 1.4606 Stainless Steel vs. AWS E430Nb

Both EN 1.4606 stainless steel and AWS E430Nb are iron alloys. They have 70% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.4606 stainless steel and the bottom bar is AWS E430Nb.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 23 to 39
23
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 75
77
Tensile Strength: Ultimate (UTS), MPa 600 to 1020
500

Thermal Properties

Latent Heat of Fusion, J/g 300
280
Melting Completion (Liquidus), °C 1430
1450
Melting Onset (Solidus), °C 1380
1410
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 14
24
Thermal Expansion, µm/m-K 11
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 26
15
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 6.0
3.1
Embodied Energy, MJ/kg 87
45
Embodied Water, L/kg 170
120

Common Calculations

PREN (Pitting Resistance) 19
18
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 21 to 36
18
Strength to Weight: Bending, points 20 to 28
18
Thermal Diffusivity, mm2/s 3.7
6.6
Thermal Shock Resistance, points 21 to 35
13

Alloy Composition

Aluminum (Al), % 0 to 0.35
0
Boron (B), % 0.0010 to 0.010
0
Carbon (C), % 0 to 0.080
0 to 0.1
Chromium (Cr), % 13 to 16
15 to 18
Copper (Cu), % 0
0 to 0.75
Iron (Fe), % 49.2 to 59
76.2 to 84.5
Manganese (Mn), % 1.0 to 2.0
0 to 1.0
Molybdenum (Mo), % 1.0 to 1.5
0 to 0.75
Nickel (Ni), % 24 to 27
0 to 0.6
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 1.9 to 2.3
0
Vanadium (V), % 0.1 to 0.5
0