MakeItFrom.com
Menu (ESC)

EN 1.4606 Stainless Steel vs. EN 1.4945 Stainless Steel

Both EN 1.4606 stainless steel and EN 1.4945 stainless steel are iron alloys. They have 86% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4606 stainless steel and the bottom bar is EN 1.4945 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 23 to 39
19 to 34
Fatigue Strength, MPa 240 to 420
230 to 350
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 75
77
Shear Strength, MPa 410 to 640
430 to 460
Tensile Strength: Ultimate (UTS), MPa 600 to 1020
640 to 740
Tensile Strength: Yield (Proof), MPa 280 to 630
290 to 550

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 770
520
Maximum Temperature: Mechanical, °C 910
920
Melting Completion (Liquidus), °C 1430
1490
Melting Onset (Solidus), °C 1380
1440
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 14
14
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 26
30
Density, g/cm3 7.9
8.1
Embodied Carbon, kg CO2/kg material 6.0
5.0
Embodied Energy, MJ/kg 87
73
Embodied Water, L/kg 170
150

Common Calculations

PREN (Pitting Resistance) 19
23
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190 to 200
130 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 200 to 1010
210 to 760
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 21 to 36
22 to 25
Strength to Weight: Bending, points 20 to 28
20 to 22
Thermal Diffusivity, mm2/s 3.7
3.7
Thermal Shock Resistance, points 21 to 35
14 to 16

Alloy Composition

Aluminum (Al), % 0 to 0.35
0
Boron (B), % 0.0010 to 0.010
0
Carbon (C), % 0 to 0.080
0.040 to 0.1
Chromium (Cr), % 13 to 16
15.5 to 17.5
Iron (Fe), % 49.2 to 59
57.9 to 65.7
Manganese (Mn), % 1.0 to 2.0
0 to 1.5
Molybdenum (Mo), % 1.0 to 1.5
0
Nickel (Ni), % 24 to 27
15.5 to 17.5
Niobium (Nb), % 0
0.4 to 1.2
Nitrogen (N), % 0
0.060 to 0.14
Phosphorus (P), % 0 to 0.025
0 to 0.035
Silicon (Si), % 0 to 1.0
0.3 to 0.6
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 1.9 to 2.3
0
Tungsten (W), % 0
2.5 to 3.5
Vanadium (V), % 0.1 to 0.5
0

Comparable Variants