MakeItFrom.com
Menu (ESC)

EN 1.4606 Stainless Steel vs. CC766S Brass

EN 1.4606 stainless steel belongs to the iron alloys classification, while CC766S brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4606 stainless steel and the bottom bar is CC766S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 23 to 39
28
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 75
40
Tensile Strength: Ultimate (UTS), MPa 600 to 1020
500
Tensile Strength: Yield (Proof), MPa 280 to 630
190

Thermal Properties

Latent Heat of Fusion, J/g 300
180
Maximum Temperature: Mechanical, °C 910
130
Melting Completion (Liquidus), °C 1430
840
Melting Onset (Solidus), °C 1380
800
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 14
89
Thermal Expansion, µm/m-K 11
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
32
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
36

Otherwise Unclassified Properties

Base Metal Price, % relative 26
24
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 6.0
2.8
Embodied Energy, MJ/kg 87
48
Embodied Water, L/kg 170
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190 to 200
110
Resilience: Unit (Modulus of Resilience), kJ/m3 200 to 1010
180
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 21 to 36
17
Strength to Weight: Bending, points 20 to 28
18
Thermal Diffusivity, mm2/s 3.7
28
Thermal Shock Resistance, points 21 to 35
17

Alloy Composition

Aluminum (Al), % 0 to 0.35
0.3 to 1.8
Antimony (Sb), % 0
0 to 0.1
Boron (B), % 0.0010 to 0.010
0
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 13 to 16
0
Copper (Cu), % 0
58 to 64
Iron (Fe), % 49.2 to 59
0 to 0.5
Lead (Pb), % 0
0 to 0.5
Manganese (Mn), % 1.0 to 2.0
0 to 0.5
Molybdenum (Mo), % 1.0 to 1.5
0
Nickel (Ni), % 24 to 27
0 to 2.0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 1.0
0 to 0.6
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.5
Titanium (Ti), % 1.9 to 2.3
0
Vanadium (V), % 0.1 to 0.5
0
Zinc (Zn), % 0
29.5 to 41.7