MakeItFrom.com
Menu (ESC)

EN 1.4606 Stainless Steel vs. C51000 Bronze

EN 1.4606 stainless steel belongs to the iron alloys classification, while C51000 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4606 stainless steel and the bottom bar is C51000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 23 to 39
2.7 to 64
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 75
42
Shear Strength, MPa 410 to 640
250 to 460
Tensile Strength: Ultimate (UTS), MPa 600 to 1020
330 to 780
Tensile Strength: Yield (Proof), MPa 280 to 630
130 to 750

Thermal Properties

Latent Heat of Fusion, J/g 300
200
Maximum Temperature: Mechanical, °C 910
190
Melting Completion (Liquidus), °C 1430
1050
Melting Onset (Solidus), °C 1380
960
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 14
77
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
18
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
18

Otherwise Unclassified Properties

Base Metal Price, % relative 26
33
Density, g/cm3 7.9
8.8
Embodied Carbon, kg CO2/kg material 6.0
3.1
Embodied Energy, MJ/kg 87
50
Embodied Water, L/kg 170
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190 to 200
7.0 to 490
Resilience: Unit (Modulus of Resilience), kJ/m3 200 to 1010
75 to 2490
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 21 to 36
10 to 25
Strength to Weight: Bending, points 20 to 28
12 to 21
Thermal Diffusivity, mm2/s 3.7
23
Thermal Shock Resistance, points 21 to 35
12 to 28

Alloy Composition

Aluminum (Al), % 0 to 0.35
0
Boron (B), % 0.0010 to 0.010
0
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 13 to 16
0
Copper (Cu), % 0
92.9 to 95.5
Iron (Fe), % 49.2 to 59
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 1.0 to 2.0
0
Molybdenum (Mo), % 1.0 to 1.5
0
Nickel (Ni), % 24 to 27
0
Phosphorus (P), % 0 to 0.025
0.030 to 0.35
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
4.5 to 5.8
Titanium (Ti), % 1.9 to 2.3
0
Vanadium (V), % 0.1 to 0.5
0
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.5