MakeItFrom.com
Menu (ESC)

EN 1.4606 Stainless Steel vs. C95300 Bronze

EN 1.4606 stainless steel belongs to the iron alloys classification, while C95300 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4606 stainless steel and the bottom bar is C95300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 23 to 39
14 to 25
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 75
42
Tensile Strength: Ultimate (UTS), MPa 600 to 1020
520 to 610
Tensile Strength: Yield (Proof), MPa 280 to 630
190 to 310

Thermal Properties

Latent Heat of Fusion, J/g 300
230
Maximum Temperature: Mechanical, °C 910
220
Melting Completion (Liquidus), °C 1430
1050
Melting Onset (Solidus), °C 1380
1040
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 14
63
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
13
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
14

Otherwise Unclassified Properties

Base Metal Price, % relative 26
28
Density, g/cm3 7.9
8.3
Embodied Carbon, kg CO2/kg material 6.0
3.1
Embodied Energy, MJ/kg 87
52
Embodied Water, L/kg 170
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190 to 200
73 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 200 to 1010
170 to 420
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 21 to 36
17 to 21
Strength to Weight: Bending, points 20 to 28
17 to 19
Thermal Diffusivity, mm2/s 3.7
17
Thermal Shock Resistance, points 21 to 35
19 to 22

Alloy Composition

Aluminum (Al), % 0 to 0.35
9.0 to 11
Boron (B), % 0.0010 to 0.010
0
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 13 to 16
0
Copper (Cu), % 0
86.5 to 90.2
Iron (Fe), % 49.2 to 59
0.8 to 1.5
Manganese (Mn), % 1.0 to 2.0
0
Molybdenum (Mo), % 1.0 to 1.5
0
Nickel (Ni), % 24 to 27
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 1.9 to 2.3
0
Vanadium (V), % 0.1 to 0.5
0
Residuals, % 0
0 to 1.0