MakeItFrom.com
Menu (ESC)

EN 1.4607 Stainless Steel vs. AISI 329 Stainless Steel

Both EN 1.4607 stainless steel and AISI 329 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 89% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4607 stainless steel and the bottom bar is AISI 329 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 21
17
Fatigue Strength, MPa 180
330
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 77
80
Shear Strength, MPa 330
440
Tensile Strength: Ultimate (UTS), MPa 530
710
Tensile Strength: Yield (Proof), MPa 270
540

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 580
450
Maximum Temperature: Mechanical, °C 930
1100
Melting Completion (Liquidus), °C 1440
1440
Melting Onset (Solidus), °C 1400
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 18
16
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 13
16
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.8
3.1
Embodied Energy, MJ/kg 40
44
Embodied Water, L/kg 130
170

Common Calculations

PREN (Pitting Resistance) 20
30
Resilience: Ultimate (Unit Rupture Work), MJ/m3 91
110
Resilience: Unit (Modulus of Resilience), kJ/m3 190
730
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 19
25
Strength to Weight: Bending, points 19
23
Thermal Diffusivity, mm2/s 4.9
4.3
Thermal Shock Resistance, points 19
19

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 18.5 to 20.5
23 to 28
Iron (Fe), % 75.6 to 81.4
63.1 to 74
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0
2.0 to 5.0
Niobium (Nb), % 0 to 1.0
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 0.75
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0.15 to 0.8
0