MakeItFrom.com
Menu (ESC)

EN 1.4607 Stainless Steel vs. EN 1.5414 Steel

Both EN 1.4607 stainless steel and EN 1.5414 steel are iron alloys. They have 79% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4607 stainless steel and the bottom bar is EN 1.5414 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 21
22
Fatigue Strength, MPa 180
250 to 270
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 330
350 to 370
Tensile Strength: Ultimate (UTS), MPa 530
550 to 580
Tensile Strength: Yield (Proof), MPa 270
350 to 380

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 930
410
Melting Completion (Liquidus), °C 1440
1470
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 18
44
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 13
2.6
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.8
1.6
Embodied Energy, MJ/kg 40
21
Embodied Water, L/kg 130
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 91
110
Resilience: Unit (Modulus of Resilience), kJ/m3 190
320 to 370
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 19
19 to 20
Strength to Weight: Bending, points 19
19 to 20
Thermal Diffusivity, mm2/s 4.9
12
Thermal Shock Resistance, points 19
16 to 17

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.2
Chromium (Cr), % 18.5 to 20.5
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 75.6 to 81.4
96.4 to 98.7
Manganese (Mn), % 0 to 1.0
0.9 to 1.5
Molybdenum (Mo), % 0
0.45 to 0.6
Nickel (Ni), % 0
0 to 0.3
Niobium (Nb), % 0 to 1.0
0
Nitrogen (N), % 0 to 0.030
0 to 0.012
Phosphorus (P), % 0 to 0.040
0 to 0.015
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.015
0 to 0.0050
Titanium (Ti), % 0.15 to 0.8
0