MakeItFrom.com
Menu (ESC)

EN 1.4607 Stainless Steel vs. EN 1.7361 Steel

Both EN 1.4607 stainless steel and EN 1.7361 steel are iron alloys. They have 82% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4607 stainless steel and the bottom bar is EN 1.7361 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 21
11
Fatigue Strength, MPa 180
480
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
74
Shear Strength, MPa 330
600
Tensile Strength: Ultimate (UTS), MPa 530
1010
Tensile Strength: Yield (Proof), MPa 270
780

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 930
470
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 18
41
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 13
3.6
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.7
Embodied Energy, MJ/kg 40
22
Embodied Water, L/kg 130
60

Common Calculations

PREN (Pitting Resistance) 20
4.4
Resilience: Ultimate (Unit Rupture Work), MJ/m3 91
110
Resilience: Unit (Modulus of Resilience), kJ/m3 190
1590
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 19
36
Strength to Weight: Bending, points 19
29
Thermal Diffusivity, mm2/s 4.9
11
Thermal Shock Resistance, points 19
29

Alloy Composition

Carbon (C), % 0 to 0.030
0.28 to 0.35
Chromium (Cr), % 18.5 to 20.5
2.8 to 3.3
Iron (Fe), % 75.6 to 81.4
94.1 to 96.2
Manganese (Mn), % 0 to 1.0
0.4 to 0.7
Molybdenum (Mo), % 0
0.3 to 0.5
Nickel (Ni), % 0
0 to 0.6
Niobium (Nb), % 0 to 1.0
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.015
0 to 0.035
Titanium (Ti), % 0.15 to 0.8
0