MakeItFrom.com
Menu (ESC)

EN 1.4607 Stainless Steel vs. EN 1.8932 Steel

Both EN 1.4607 stainless steel and EN 1.8932 steel are iron alloys. They have 80% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4607 stainless steel and the bottom bar is EN 1.8932 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 21
20
Fatigue Strength, MPa 180
250
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 330
370
Tensile Strength: Ultimate (UTS), MPa 530
600
Tensile Strength: Yield (Proof), MPa 270
370

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 930
410
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 18
40
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 13
2.5
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.7
Embodied Energy, MJ/kg 40
24
Embodied Water, L/kg 130
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 91
100
Resilience: Unit (Modulus of Resilience), kJ/m3 190
370
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 19
21
Strength to Weight: Bending, points 19
20
Thermal Diffusivity, mm2/s 4.9
11
Thermal Shock Resistance, points 19
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.060
Carbon (C), % 0 to 0.030
0 to 0.2
Chromium (Cr), % 18.5 to 20.5
0 to 0.3
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 75.6 to 81.4
95.5 to 98.9
Manganese (Mn), % 0 to 1.0
1.0 to 1.7
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 1.0
Niobium (Nb), % 0 to 1.0
0 to 0.050
Nitrogen (N), % 0 to 0.030
0 to 0.020
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0.1 to 0.6
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0.15 to 0.8
0
Vanadium (V), % 0
0 to 0.2