MakeItFrom.com
Menu (ESC)

EN 1.4607 Stainless Steel vs. C40500 Penny Bronze

EN 1.4607 stainless steel belongs to the iron alloys classification, while C40500 penny bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4607 stainless steel and the bottom bar is C40500 penny bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 21
3.0 to 49
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
43
Shear Strength, MPa 330
210 to 310
Tensile Strength: Ultimate (UTS), MPa 530
270 to 540
Tensile Strength: Yield (Proof), MPa 270
79 to 520

Thermal Properties

Latent Heat of Fusion, J/g 290
200
Maximum Temperature: Mechanical, °C 930
190
Melting Completion (Liquidus), °C 1440
1060
Melting Onset (Solidus), °C 1400
1020
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 18
160
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
41
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
42

Otherwise Unclassified Properties

Base Metal Price, % relative 13
30
Density, g/cm3 7.7
8.8
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 40
43
Embodied Water, L/kg 130
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 91
16 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 190
28 to 1200
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 19
8.5 to 17
Strength to Weight: Bending, points 19
10 to 17
Thermal Diffusivity, mm2/s 4.9
48
Thermal Shock Resistance, points 19
9.5 to 19

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 18.5 to 20.5
0
Copper (Cu), % 0
94 to 96
Iron (Fe), % 75.6 to 81.4
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Niobium (Nb), % 0 to 1.0
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.7 to 1.3
Titanium (Ti), % 0.15 to 0.8
0
Zinc (Zn), % 0
2.1 to 5.3
Residuals, % 0
0 to 0.5