MakeItFrom.com
Menu (ESC)

EN 1.4611 Stainless Steel vs. EN 1.4438 Stainless Steel

Both EN 1.4611 stainless steel and EN 1.4438 stainless steel are iron alloys. They have 82% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4611 stainless steel and the bottom bar is EN 1.4438 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
180
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 21
41
Fatigue Strength, MPa 180
220
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 78
79
Shear Strength, MPa 330
420
Tensile Strength: Ultimate (UTS), MPa 530
620
Tensile Strength: Yield (Proof), MPa 280
250

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 530
420
Maximum Temperature: Mechanical, °C 970
1000
Melting Completion (Liquidus), °C 1440
1450
Melting Onset (Solidus), °C 1390
1400
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 21
14
Thermal Expansion, µm/m-K 11
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
22
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.5
4.4
Embodied Energy, MJ/kg 36
60
Embodied Water, L/kg 140
160

Common Calculations

PREN (Pitting Resistance) 21
31
Resilience: Ultimate (Unit Rupture Work), MJ/m3 91
200
Resilience: Unit (Modulus of Resilience), kJ/m3 190
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 19
22
Strength to Weight: Bending, points 19
20
Thermal Diffusivity, mm2/s 5.7
3.7
Thermal Shock Resistance, points 18
14

Alloy Composition

Aluminum (Al), % 0 to 0.050
0
Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 19 to 22
17.5 to 19.5
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 73.3 to 80.8
57.3 to 66.5
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 0 to 0.5
3.0 to 4.0
Nickel (Ni), % 0 to 0.5
13 to 16
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.050
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.015
Titanium (Ti), % 0.2 to 1.0
0