MakeItFrom.com
Menu (ESC)

EN 1.4611 Stainless Steel vs. EN 2.4851 Nickel

EN 1.4611 stainless steel belongs to the iron alloys classification, while EN 2.4851 nickel belongs to the nickel alloys. They have a modest 35% of their average alloy composition in common, which, by itself, doesn't mean much. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4611 stainless steel and the bottom bar is EN 2.4851 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 21
34
Fatigue Strength, MPa 180
170
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 78
76
Shear Strength, MPa 330
430
Tensile Strength: Ultimate (UTS), MPa 530
650
Tensile Strength: Yield (Proof), MPa 280
230

Thermal Properties

Latent Heat of Fusion, J/g 290
320
Maximum Temperature: Mechanical, °C 970
1200
Melting Completion (Liquidus), °C 1440
1360
Melting Onset (Solidus), °C 1390
1310
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 21
11
Thermal Expansion, µm/m-K 11
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
49
Density, g/cm3 7.7
8.2
Embodied Carbon, kg CO2/kg material 2.5
8.1
Embodied Energy, MJ/kg 36
120
Embodied Water, L/kg 140
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 91
170
Resilience: Unit (Modulus of Resilience), kJ/m3 190
130
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 19
22
Strength to Weight: Bending, points 19
20
Thermal Diffusivity, mm2/s 5.7
2.9
Thermal Shock Resistance, points 18
17

Alloy Composition

Aluminum (Al), % 0 to 0.050
1.0 to 1.7
Boron (B), % 0
0 to 0.0060
Carbon (C), % 0 to 0.030
0.030 to 0.1
Chromium (Cr), % 19 to 22
21 to 25
Copper (Cu), % 0 to 0.5
0 to 0.5
Iron (Fe), % 73.3 to 80.8
7.7 to 18
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 0.5
58 to 63
Phosphorus (P), % 0 to 0.050
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.050
0 to 0.015
Titanium (Ti), % 0.2 to 1.0
0 to 0.5